

GAMMS: Galileo/GNSS Autonomous Mobile Mapping System Start date: July 2021 Duration: 30 months

Funding: H2020 EUSPA

Consortium: 7 companies (from Spain, France, Finland and Portugal), and 1 University (from Switzerland)

A Complementary Consortium

GAMMS main offering

- HD base maps characterized by
- high accuracy,
- high reliability, and
- certified (if required).

- Inclusion of quasi real-time, continuous online update of the non-base HDM.

GAMMS secondary offerings ¹

- an **enhanced AV** (better navigation, better maps)

automated & AI-based HDM production,

 a new GNSS/Galileo receiver including the recent and coming Galileo features and services,

- an **enhanced trajectory determination system** including vehicle dynamic models (VDMs), dynamic networks (DNs), Galileo-enabled features

- a new road quality assessment method, HW and/or SW, based on multispectral laser scanner (MLS)

GAMMS value proposition

AMMS-made HD base maps for AV applications that, at comparable technical specifications, are 30% to 40% less expensive that current (manned MMS-made) options. The **unique benefits** stem from:

- the elimination or -country-dependent- reduction of MMS crews on account of the use of AVs,
- the very large reduction of the number of field surveyed ground control points (GCPs) thanks to the use of Galileo and new trajectory determination techniques like DNs and VDMs,
- the **shortened map production times** due to the use of AI -reduction of human image and cartographic interpretation-.

Provision of GNSS receiver with the following enhancements:

- Inclusion of Galileo Open-Service Navigation Message Authentication OS NMA
- Implementation of Galileo High Accuracy Service HAS
- Assessment on how to implement CAS (Commercial Authentication Service)

• E1 Band (GNSS)

• E6B (HAS Data Link)

225 250 275 300 325 350 375 400

Vehicle Dynamic Model

Position drift vs. GNSS outage

EPFL has already demonstrated how employing VDMs brings tremendous improvement in trajectory determination for aerial applications, especially during GNSS outages. **Higher fidelity VDMs will provide GAMMS a better navigation performance with a reliable support for outlier detection and improved integrity monitoring**

ge_lø_lnumerics

Trajectory estimation SW platform, that delivers real-time and post-mission trajectories

multi-sensor navigation:

- GNSS navigation
- HAS Galileo
- multi-constellation & multi-frequency GNSS
- inertial measurement unit (IMU),
- odometer,
- chip-scale atomic clock (CSAC)
- vehicle dynamic models (VDM)
- visual features from camera images

improved navigation: precision, accuracy, resiliency, integrity

Surface fitting algorithm:

The algorithm fits a polynomial surface to the road surface and separates pavement points from those points that remain below the surface, classifying them as road damage points

HD map generation

	Objects	Examples
Real objects	Lane Lines	etc.
	Double Lane Lines	etc.
	Road Edges	Walls, Road Edges, Guard Rails, Barricade Blocks etc.
	Road Markings	Directions, Safety-zones, Caution of road obstacles etc.
	Traffic Signs	① ① ① ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
	Traffic Lights	etc.
	Tunnel boundaries	Boundaries between Inside and outside tunnel
Virtual objects	Lane Linkage	Lane center line in each lanes
	Road Linkage	Linkage of each up and down lanes for linking external data
	Intersection	Polygon data which defines the area of intersection

Dynamic information

Information on surrounding vehicles, pedestrians, traffic lights, etc.

Quasi-dynamic information

Traffic accident information, traffic regulation information, traffic congestion information, narrow area weather information, etc.

Quasi-static information

Traffic regulations, road construction schedules, wide-area weather forecast information, etc.

Static information (High-Precision 3D Map data (HD Map))

Information on the number of lanes, lot lines, roads, building locations, etc.

Twitter

LinkedIn group

LinkedIn page

YouTube channel

Questions?

